以正交基底為基礎之Multiple-Instance影像資料擷取方法

內容簡介

使用碎形正交基底編碼 (Fractal orthonormal bases) 技術結合 Multiple-Instance Learning,建立熱帶魚影像資料庫,每張資料庫內影像之特徵均由對碎形正交基底之投影向量值表示。正交基底是由碎形迭代函數透過target及domain blocks比對所訓練導出,可證明相似影像具相似碎形函數,而且不相似影像具相異碎形特徵向量;換言之,特徵點相距越遠,保證其對應影像內容一定不相似,然而特徵點較靠近,則保證其影像內容相似。因此,使用碎形正交基底函數線性組合所得係數為搜尋資料庫索引鍵值,可取得相似影像,並避免找出不相似影像。

由於欲搜尋之影像很難根據單一張搜尋影像 (query image )代表所有可能之形狀、大小或方位,為使搜尋條件更為明確,藉由輸入多張與目標影像正、負相關搜尋影像,透過 Multiple-Instance learning 法則自動地找出與正相關影像 (positive examples) 相似且與負相關(negative examples)不相似之碎形正交基底投影向量特徵,使搜尋條件更為明確,將使用者最有興趣之部分,結合具有良好索引檔之碎形正交基底之技術。

影像比對時,方法是依據 MIL所擷取之特徵,找尋資料庫哪些影像具有相似特徵,計算相似度,依此作排名輸出。詳細比對時,將資料庫中有著搜尋特徵之影像,找出該所屬區域,將擷取之特徵群正規化,求得每個特徵群佔所有搜尋特徵群之比例關係,再以依正相關特徵群之比例和資料庫影像特徵群比例,類似計算histogram之方式求得特徵比例相似度之外;另外還加入計算所求得特徵群之間結構關係,與正相關範例影像之特徵群結構關係亦計算特徵結構相似度;在加入每個特徵群區域之分散程度,及簡單計算其區域變異數亦和正相關範例做比較,於上述三者加入相似性量測中

 

多張範例擷取共同特徵

上圖為輸入三張正相關範例影像與一張負相關影像,下圖為所擷取之特徵

 

 

單張搜尋結果

三張正相關一張負相關搜尋結果

 

更多資料

投影片